Understanding Small-Sample Statistics for Experimental Analysis

Sean P. Sullivan
Department of Economics & School of Law
University of Virginia

March 28, 2011

Overview

Deficiencies in Current Research

- Generally understood that small samples are a problem
- On Not generally understood why they are a problem
- Ocordinate on certain favorite techniques
- Favorite techniques are not always appropriate

Overview

Presentation Overview

- Intuition behind problem and solutions
- Ompare alternative tests
- Application to Newsvendor Problem

Outline

- Newsvender Problem
- 2 Normal Theory
- Fisher Permutation
- 4 Wilcoxon Signed-Rank
- Sign Test
- 6 Comments

Newsvender Problem

Figure: Newsvendor Problem Graph

Newsvender Problem Data

Average Quantity Supplied by Participant

$$q_1 = 4.00$$
 $q_5 = 3.85$

$$q_2 = 4.20$$
 $q_6 = 4.65$

$$q_3 = 5.75$$
 $q_7 = 3.60$

$$q_4 = 5.60$$
 $q_8 = 4.35$

Data Properties

- independent √
- identically distributed √
- small sample, $n = 8 \checkmark$

Research Question

Summary of Current Data

$$\overline{q} = \frac{1}{n} \sum_{i=1}^{n} q_i = 4.5$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (q_i - \overline{q})^2 = 0.792$

Inferential Question

If another group of subjects played the same game tomorrow, do these data suggest tomorrow's average quantity supplied would exceed 4 units?

Simplifying Trick

Iransformation

Let $x_i = q_i - 4$ as follows:

$$q_1 = 4.00$$
 $q_5 = 3.85$ \rightarrow $x_1 = 0.00$
 $q_2 = 4.20$ $q_6 = 4.65$ \rightarrow $x_2 = 0.20$

$$q_3 = 5.75$$
 $q_7 = 3.60$ \rightarrow $x_3 = 1.75$ $x_7 = -0.40$

$$q_4 = 5.60$$
 $q_8 = 4.35$ \rightarrow $x_4 = 1.60$ $x_8 = 0.35$

 $x_5 = -0.15$

 $x_6 = 0.65$

Outline

- 1 Newsvender Problem
- 2 Normal Theory
- Fisher Permutation
- 4 Wilcoxon Signed-Rank
- 5 Sign Test
- Comments

Test Statistic

Familiar Normal-Theory Test Statistic

$$T_{STT} = \frac{\overline{x}}{\sqrt{V[\overline{x}]}} = \frac{\overline{x}}{s/\sqrt{n}}$$

$$\bar{x} = 0.5$$
 $s = 0.792$
 $n = 8$
 $T_{STT}^* = 1.786$

Normal Distribution, Any Sample Size

If we assume the sample observations follow a normal distribution so that $x_1, \ldots, x_n \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ then $T_{STT} \sim t_{n-1}$.

Any Distribution, Large Sample Size

As the sample size becomes large so that $n \to \infty$, for any mean-zero distribution of sample observations, $T_{STT} \stackrel{\mathrm{d}}{\to} t_{n-1} \stackrel{\mathrm{d}}{\to} \mathcal{N}(0,1)$.

Calculating the P-Value

p-value =
$$P(T_{STT} \ge T_{STT}^*)$$

= $P(t_7 \ge 1.786)$
= 0.0586

Non-Normal Distribution, Small Sample Size

- When skewness or kurtosis are severe, results of the t test can be misleading.
- The sample size n needed to achieve good results increases as the sample distribution becomes less normal.
- The t test is rather robust for validity, but not generally robust for efficiency.

Checking Normality Assumption

Figure: Normal Probability (Probit) Plot

Options when Normality Violated

- More robust test statistics
- Transformations of sample data
- Nonparametric test statistics √

Outline

- Newsvender Problem
- 2 Normal Theory
- Fisher Permutation
- 4 Wilcoxon Signed-Rank
- 5 Sign Test
- 6 Comments

Test Statistic

Fisher Permutation Test Statistic

$$T_{FPT} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x} \propto T_{STT}$$

$$T_{FPT}^* = \overline{x} = 0.5$$

Symmetric Distribution

If the sampling distribution of the observations is symmetric around zero, then any observation in the sample was equally likely to have been drawn with either a positive or negative sign.

Sign Assignments

The particular signs observed in the sample are only one out of $2^n = 256$ equally likely ways that signs could have attached to the observed data.

Test Statistic Values

Each vector of signs yields a test statistic with a 1/256 chance of being observed. The full set of 256 test statistic values is the null distribution.

Example Construction of Null Distribution for n = 3

Consider only the last three observations: 0.65, -0.40, 0.35.

Calculating the P-Value

p-value =
$$P(T_{FPT} \ge T_{FPT}^*)$$

= $\#\{T_{FPT} \ge T_{FPT}^*\}/2^n$
= $18/256$
= 0.0703125

Comments

- No closed-form, recursive, or approximate definition of null distribution
- 2 Computation cost exponential in sample size
- Bootstrapping null distribution can reduce computation cost for large samples
- Asymptotically equivalent to the usual t test

Outline

- 1 Newsvender Problem
- 2 Normal Theory
- Fisher Permutation
- Wilcoxon Signed-Rank
- 5 Sign Test
- 6 Comments

Test Statistic

Signed-Rank Definition

Define SR_i as the signed-rank of observation x_i in sample x: $x_i = 0.02 - 1.75 - 1.6 -0.15 -0.65 -0.4 -0.35$

 SR_i 1 3 8 7 -2 6 -5 4

Wilcoxon Signed-Rank Test Statistic

$$T_{WSR} = \sum_{i=1}^{n} SR_i$$

$$T_{WSP}^* = 1 + 3 + 8 + 7 - 2 + 6 - 5 + 4 = 22$$

Symmetric Distribution

If the sampling distribution of the observations is symmetric around zero, then any observation in the sample was equally likely to have been drawn with either a positive or negative sign.

Sign Assignments

The particular signs observed in the sample are only one out of $2^n = 256$ equally likely ways that signs could have attached to the observed data.

Test Statistic Values

Each vector of signs yields a test statistic with a 1/256 chance of being observed. The full set of 256 test statistic values is the null distribution.

Example Construction of Null Distribution for n = 3

Consider only the last three observations: 0.65, -0.40, 0.35.

The signed-rank transformation of this sample is: 3,-2, 1.

$$SR_1$$
 SR_2 SR_3 \rightarrow $\sum SR_i$
3 2 1 \rightarrow 6
3 2 -1 \rightarrow 4
3 -2 1 \rightarrow 2
3 -2 -1 \rightarrow 0
-3 2 1 \rightarrow 0
-3 2 1 \rightarrow -2
-3 -2 1 \rightarrow -4
-3 -2 -1 \rightarrow -6

Calculating the P-Value

p-value =
$$P(T_{WSR} \ge T_{WSR}^*)$$

= $\#\{T_{WSR} \ge T_{WSR}^*\}/2^n$
= $19/256$
= 0.07421875

Alternative Null Distributions

Non-Data Distributions

- If no ties or zeros, null distribution can be computed without reference to data
- Pre-computed tables for small sample sizes
- Recursive algorithms for larger sample sizes

Approximate Distributions

- Same restrictions on ties and zeros
- Asymptotic approximation to normal distribution

$$\frac{T_{WSR}^*}{\sqrt{\frac{n(n+1)(2n+1)}{6}}} \stackrel{\mathrm{d}}{\to} N(0,1)$$

Comments

- Oppular by historical accident: alternative null distribution helpful when no computers
- Asymptotic null distribution saves computation cost for large samples
 - But with large samples, t test often works well anyway
- Ties and zero values can be a headache unless null distribution is constructed by exhaustive permutation
- Less sensitive to outliers than t test or Fisher Permutation test
- Pretty good asymptotic relative efficiency compared to t test:
 - For normal distribution about $\frac{3}{\pi} = 95.5\%$

Outline

- Newsvender Problem
- 2 Normal Theory
- Fisher Permutation
- 4 Wilcoxon Signed-Rank
- 5 Sign Test
- 6 Comments

Test Statistic

Focus on Median

Let $\mu \equiv 0$ be the hypothesized median value.

Sign Test Statistic

$$T_{ST} = \sum_{i=1}^{n} 1\{x_i > 0\}$$

$$x_i$$
 0 0.2 1.75 1.6 -0.15 0.65 -0.4 0.35 $1\{x_i>0\}$? 1 1 1 0 1 0 1 $T_{ST}^*=5$

No Ties Requirement

If no observations equal zero, then any observation in the sample was equally likely to have been drawn with either a positive or negative sign.

Distribution of Signs

The sign of each observation is a random draw from a Bernoulli distribution with parameter $\theta = \frac{1}{2}$.

Null Distribution

The total number of positive signs (a sum of Bernoulli random variables) is Binomial distributed with parameters n and $\theta = \frac{1}{2}$.

Lower-Tail Test

$$\text{p-value} = \sum_{i=1}^{T_{ST}^*} \binom{n}{k} \left(\frac{1}{2}\right)^n$$

Upper-Tail Test

$$\text{p-value} = \sum_{i=1}^{n-T_{ST}^*} \binom{n}{k} \left(\frac{1}{2}\right)^n$$

The Problem with Ties to Zero

Three common ways to deal with zero-valued observations:

- Assign ties conservatively √
- ② Assign ties a value of $\frac{1}{2}$
- Orop ties from sample √

Calculating the Conservative P-value

Treat the zero observation as a negative value.

p-value =
$$\sum_{j=1}^{3} {8 \choose k} \left(\frac{1}{2}\right)^{8}$$
$$= 0.3632813$$

Calculating the Conditional P-value

Drop the zero-value, and treat as a sample with n = 7.

$$\begin{aligned} \text{p-value} &= \sum_{j=1}^2 \binom{7}{k} \left(\frac{1}{2}\right)^7 \\ &= 0.2265625 \end{aligned}$$

Comments

- Oncerns median, not (necessarily) mean
- Without ties to zero, no distributional requirements
- Valid even with skewed distributions
- 4 Generally low efficiency
- Asymptotically relatively efficient for very heavy-tailed distributions

Outline

- Newsvender Problem
- 2 Normal Theory
- Fisher Permutation
- 4 Wilcoxon Signed-Rank
- 5 Sign Test
- **6** Comments

Two-Sample Analogues

Matched-Pairs Samples

Take the vector-difference of the samples, then perform a one-sample test.

Independent Samples

There are two-sample analogues to each of the discussed tests:

- 0 t test \rightarrow two-sample t test
- ② Fisher Permutation test → Pitman Permutation test
- Wilcoxon Signed-Rank test →
 Wilcoxon-Mann-Whitney Rank-Sum test
- Sign test → Median test

Overview

Manski's Law of Decreasing Marginal Credibility

Tests based on stronger assumptions tend to yield sharper but less credible results.

Non-Parametric Tests

- These are not "no assumption" or "distribution free" tests
- Relative efficiency helps to decide between competing tests
- No statistical test is universally appropriate